⚡ optim

Optimization Algorithms

23 functions 875 lines Gradient-based

📖 Overview

Optimization algorithms: gradient descent, Newton, BFGS, simulated annealing, genetic algorithms.

🚀 Quick Start

import optim

function f(x: float) -> float do
    return (x - 2.0) * (x - 2.0)
end

let result = optim.minimize(f, 0.0)?
println("Minimum at x = {}", result.x)

← All Modules | 🇹🇷 Türkçe